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On rings with divided nil ideal: a survey
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Abstract. Let R be a commutative ring with 1 # 0 and Nil(R) be its set of nilpotent elements.
Recall that a prime ideal of R is called a divided prime if P C (x) for every x € R\ P; thus a
divided prime ideal is comparable to every ideal of R. In many articles, the author investigated the
class of rings # = {R | R is a commutative ring and Nil(R) is a divided prime ideal of R} (Observe
that if R is an integral domain, then R € #.) If R € J, then R is called a ¢-ring. Recently, David
Anderson and the author generalized the concept of Priifer domains, Bezout domains, Dedekind
domains, and Krull domains to the context of rings that are in the class #. Also, Lucas and the
author generalized the concept of Mori domains to the context of rings that are in the class #. In
this paper, we state many of the main results on ¢-rings.
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1 Introduction

Let R be a commutative ring with 1 # 0 and Nil(R) be its set of nilpotent elements.
Recall from [26] and [7] that a prime ideal of R is called a divided prime if P C (x)
for every x € R\ P; thus a divided prime ideal is comparable to every ideal of R.
In [6], [8], [9], [10], and [11], the author investigated the class of rings # = {R | R
is a commutative ring and Nil(R) is a divided prime ideal of R}. (Observe that if R
is an integral domain, then R € #.) If R € J, then R is called a ¢-ring. Recently,
David Anderson and the author, [3] and [4], generalized the concept of Priifer, Bezout
domains, Dedekind domains, and Krull domains to the context of rings that are in the
class #€. Also, Lucas and the author, [17], generalized the concept of Mori domain to
the context of rings that are in the class #. Yet, another paper by Dobbs and the author
[14] investigated going-down ¢-rings. In this paper, we state many of the main results
on ¢-rings.

We assume throughout that all rings are commutative with 1 # 0. Let R be a
ring. Then T (R) denotes the total quotient ring of R, and Z(R) denotes the set of
zerodivisors of R. We start by recalling some background material. A non-zerodivisor
of a ring R is called a regular element and an ideal of R is said to be regular if it
contains a regular element. An ideal / of a ring R is said to be a nonnil ideal if
I & Nil(R). If I is a nonnil ideal of a ring R € #, then Nil(R) C [. In particular,
this holds if / is a regular ideal of aring R € #.

Recall from [6] that for a ring R € J with total quotient ring 7 (R), the map
¢ : T(R) — Ryi(r) such that ¢(a/b) = a/bfora € Randb € R\ Z(R) is
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a ring homomorphism from 7'(R) into Ryj(r), and ¢ restricted to R is also a ring
homomorphism from R into Ryir) given by ¢(x) = x/1 for every x € R. Ob-
serve that if R € J, then ¢(R) € H, Ker(¢) € Nil(R), Nil(T(R)) = Nil(R),
Nil(Ryiry)) = ¢(Nil(R)) = Nil((R)) = Z($(R)). T($(R)) = Ryu(g is quasilo-
cal with maximal ideal Nil(¢(R)), and Ryir)/ Nil(¢(R)) = T(¢(R))/ Nil(¢(R)) is
the quotient field of ¢ (R)/ Nil(¢(R)).

Recall that an ideal I of a ring R is called a divisorial ideal of R if (I7")™! = I,
where 1! = {x € T(R) | xI € R}. If aring R satisfies the ascending chain
condition (a.c.c.) on divisorial regular ideals of R, then R is called a Mori ring in the
sense of [46]. An integral domain R is called a Dedekind domain if every nonzero
ideal of R is invertible, i.e., if I is a nonzero ideal of R, then I7~' = R. If every
finitely generated nonzero ideal I of an integral domain R is invertible, then R is said
to be a Priifer domain. If every finitely generated regular ideal of a ring R is invertible,
then R is said to be a Priifer ring. If R is an integral domain and x~' € R for each
x € T(R) \ R, then R is called a valuation domain. Also, recall from [29] that an
integral domain R is called a Krull domain if R = NV;, where each V; is a discrete
valuation overring of R, and every nonzero element of R is a unit in all but finitely
many V;. Many characterizations and properties of Dedekind and Krull domains are
given in [29], [30], and [40]. Recall from [32] that an integral domain R with quotient
field K is called a pseudo-valuation domain (PVD) in case each prime ideal of R is
strongly prime in the sense that xy € P, x € K, y € K implies that either x € P
or y € P. Every valuation domain is a pseudo-valuation domain. In [13], Anderson,
Dobbs and the author generalized the concept of pseudo-valuation rings to the context
of arbitrary rings. Recall from [13] that a prime ideal P of R is said to be strongly
prime if either aP C bR or bR C aP for all a,b € R. A ring R is said to be a
pseudo-valuation ring (PVR) if every prime ideal of R is a strongly prime ideal of R.

Throughout the paper, we will use the technique of idealization of a module to
construct examples. Recall that for an R-module B, the idealization of B over R is the
ring formed from R x B by defining addition and multiplication as (r,a) + (s,b) =
(r +s,a + b) and (r,a)(s,b) = (rs,rb + sa), respectively. A standard notation for
the “idealized ring” is R(+4)B. See [38] for basic properties of these rings.

2 ¢-pseudo-valuation rings and ¢-chained rings

In [6], the author generalized the concept of pseudo-valuation domains to the context
of rings that are in #. Recall from [6] that a ring R € K is said to be a ¢-pseudo-
valuation ring (¢p-PVR) if every nonnil prime ideal of R is a ¢-strongly prime ideal of
¢ (R), in the sense that xy € ¢(P), x € Rnir) » ¥ € Rnir) (observe that Ryir) =
T(¢(R))) implies that either x € ¢(P) or y € ¢(P). We state some of the main
results on ¢-pseudo-valuation rings.

Theorem 2.1 ([8, Proposition 2.1]). Let D be a PVD and suppose that P, Q are prime
ideal of D such that P is properly contained in Q. Let d > 1 and choose x € D such
that Rad(xD) = P. Then J = xd‘HDQ is an ideal of D and hence D/J is a PVR
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with the following properties:
(i) Nil(R) = P/J and x* & J;
(i) Z(R)=0Q/J.

Theorem 2.2 ([8, Corollary 2.7]). Letd > 2, D, P, Q,x, J, and R be as in Theorem
2.1. Set B = Ryi(r). Then the idealization ring R(+)B is a ¢-PVR that is not a PVR.

Theorem 2.3 ([10, Proposition 2.9], also see [23, Theorem 3.1]). Let R € H#. Then R
is a ¢-PVR if and only if R/ Nil(R) is a PVD.

Recall from [9] that aring R € J is said to be a ¢-chained ring (¢-CR) if for each
x € Rnir) \ #(R) we have x~! € ¢(R). Aring A is said to be a chained ring if for
every a,b € A, eithera | b (in A) or b | a (in A).

Theorem 2.4 ([9, Corollary 2.7]). Let d > 2, D be a valuation domain, P, Q,x,J, R
be as in Theorem 2.1. Then R = D/J is a chained ring. Furthermore, if B = Ryii(r),
then the idealization ring R(+)B is a ¢-CR that is not a chained ring.

Theorem 2.5 ([9, Proposition 3.3]). Let R € H be a quasi-local ring with maximal
ideal M such that M contains a regular element of R . Then R is a ¢-PVR if and only
if(M :M)={xeT(R)| xM C M} is a $-CR with maximal ideal M .

Theorem 2.6 ([3, Theorem 2.7]). Let R € H#. Then R is a ¢-CR if and only if
R/ Nil(R) is a valuation domain.

Recall that B is said to be an overring of a ring A if B is a ring between A and
T(A).

Theorem 2.7 ([10, Corrollary 3.17]). Let R € H be a ¢-PVR with maximal ideal M.
The following statements are equivalent:
(1) Every overring of R is a ¢-PVR;
(i) R[u] is a ¢-PVR for eachu € (M : M) \ R;
(iii) R[u] is quasi-local for eachu € (M : M) \ R;

(iv) If B is an overring of R and B C (M : M), then B is a ¢-PVR with maximal
ideal M ;

(v) If Bis an overring of Rand B C (M : M), then B is quasi-local;
(vi) Every overring of R is quasi-local;

(vii) Every ¢-CR between R and T (R) other than (M : M) is of the form Rp for
some non-maximal prime ideal P of R;

(viii) R’ = (M : M) (where R’ is the integral closure of R inside T(R)).
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3 Nonnil Noetherian rings (¢-Noetherian rings)

Recall that an ideal I of aring R is said to be a nonnil ideal if / & Nil(R). Let R € .
Recall from [11] that R is said to be a a nonnil-Noetherian ring or just a ¢-Noetherian
ring as in [16] if each nonnil ideal of R is finitely generated. We have the following
results.

Theorem 3.1 ([11, Corollary 2.3]). Let R € H#. If every nonnil prime ideal of R is
finitely generated, then R is a ¢-Noetherian ring.

Theorem 3.2 ([11, Theorem 2.4]). Let R € J. The following statements are equiva-
lent:

(1) R is a ¢-Noetherian ring;

(ii)) R/ Nil(R) is a Noetherian domain;
(iii) ¢ (R)/ Nil(¢(R)) is a Noetherian domain;
@iv) @¢(R) is a ¢p-Noetherian ring.

Theorem 3.3 ([11, Theorem 2.6]). Let R € J. Suppose that each nonnil prime ideal
of R has a power that is finitely generated. Then R is a ¢-Noetherian ring.

Theorem 3.4 ([11, Theorem 2.7]). Let R € J. Suppose that R is a ¢p-Noetherian ring.
Then any localization of R is a ¢p-Noetherian ring, and any localization of ¢(R) is a
¢-Noetherian ring.

Theorem 3.5 ([11, Theorem 2.9]). Let R € #. Suppose that R satisfies the ascending
chain condition on the nonnil finitely generated ideals. Then R is a ¢p-Noetherian ring.

Theorem 3.6 ([11, Theorem 3.4]). Let R be a Noetherian domain with quotient field K
such that dim(R) = 1 and R has infinitely many maximal ideals. Then D = R(4+)K €
H is a ¢-Noetherian ring with Krull dimension one which is not a Noetherian ring. In
particular, Z.(+)Q is a ¢p-Noetherian ring with Krull dimension one which is not a
Noetherian ring (where 7. is the set of all integer numbers with quotient field Q).

Theorem 3.7 ([11, Theorem 3.5]). Let R be a Noetherian domain with quotient field K
and Krull dimensionn > 2. Then D = R(+)K € K is a ¢p-Noetherian ring with Krull
dimension n which is not a Noetherian ring. In particular, if K is the quotient field of
R = Z[xi1,...,xy—1], then R(4+)K is a ¢p-Noetherian ring with Krull dimension n
which is not a Noetherian ring.

In the following result, we show that a ¢-Noetherian ring is related to a pullback of
a Noetherian domain.
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Theorem 3.8 ([16, Theorem 2.2]). Let R € J#. Then R is a ¢p-Noetherian ring if
and only if ¢ (R) is ring-isomorphic to a ring A obtained from the following pullback
diagram:

A — S=A/M

\ \
T — T/M

where T is a zero-dimensional quasilocal ring containing A with maximal ideal M,
S = A/M is a Noetherian subring of T/ M, the vertical arrows are the usual inclusion
maps, and the horizontal arrows are the usual surjective maps.

Theorem 3.9 ([16, Proposition 2.4]). Let R € J be a ¢p-Noetherian ring and let [ # R
be an ideal of R. If I C Nil(R), then R/I is a ¢-Noetherian ring. If I ¢ Nil(R), then
Nil(R) C I and R/ is a Noetherian ring. Moreover, if Nil(R) C I, then R/I is both
Noetherian and ¢-Noetherian if and only if I is either a prime ideal or a primary ideal
whose radical is a maximal ideal.

Theorem 3.10 ([16, Corollary 2.5]). Let R € K be a ¢-Noetherian ring. Then a
homomorphic image of R is either a ¢-Noetherian ring or a Noetherian ring.

Our next result shows that a ¢-Noetherian ring satisfies the conclusion of the Prin-
cipal Ideal Theorem (and the Generalized Principal Ideal Theorem).

Theorem 3.11 ([16, Theorem 2.7]). Let R € H be a ¢p-Noetherian ring and let P be a
prime ideal. If P is minimal over an ideal generated by n or fewer elements, then the
height of P is less than or equal to n. In particular, each prime minimal over a nonnil
element of R has height one.

Other statements about primes of Noetherian rings that can be easily adapted to
statements about primes of ¢-Noetherian rings include the following.

Theorem 3.12 ([16, Proposition 2.8] and [40, Theorem 145]). Let R € H satisfy the
ascending chain condition on radical ideals. If R has an infinite number of prime
ideals of height one, then their intersection is Nil(R).

Theorem 3.13 ([16, Proposition 2.9]). Let R € K be a ¢-Noetherian ring and P be

a nonnil prime ideal of R of height n. Then there exist nonnil elements ay, ... ,a, in
R such that P is minimal over the ideal (a1, ...,a,) of R, and for anyi (1 <i <n),
every (nonnil) prime ideal of R minimal over (a1, ...,a;) has height i.

Theorem 3.14 ([16, Proposition 2.10]). Let R € H be a ¢-Noetherian ring and let |
be an ideal of R generated by n elements with I # R. If P is a prime ideal containing
1 with P/1I of height k, then the height of P is less than or equal ton + k.

Theorem 3.15 ([16, Proposition 3.1]). Let R € H be a ¢p-Noetherian ring and let P
be a height n prime of R. If Q is a prime of R[x] that contracts to P but properly
contains PR[x], then PR[x] has height n and Q has height n + 1.
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Similar height restrictions exist for the primes of R[x1, ..., Xp].

Theorem 3.16 ([16, Proposition 3.2]). Let R € H be a ¢p-Noetherian ring and let P be

a height n prime of R. If Q is a prime of R[x1, ..., X ] that contracts to P but properly
contains PR[xy, ..., Xm], then PR[x1, ..., xm] has height n and Q has height at most
n + m. Moreover the prime PR[x1,...,Xm] + (X1,..., Xm)R[X1, ..., Xm] has height
n—+m.

Theorem 3.17 ([16, Corollary 3.3]). If R is a finite dimensional ¢-Noetherian ring of
dimension n, then dim(R[x1, ..., Xx;;]) = n + m for each integer m > 0.

In our next result, we show that each ideal of R[x] that contracts to a nonnil ideal
of R is finitely generated.

Theorem 3.18 ([16, Proposition 3.4]). Let R € H be a ¢-Noetherian ring. If I is an
ideal of R[x1, ..., Xy for which I N R is not contained in Nil(R), then I is a finitely
generated ideal of R[xy, ..., Xn].

Since three distinct comparable primes of R[x] cannot contract to the same prime
of R, a consequence of Theorem 3.18 is that the search for primes of R[x] that are not
finitely generated can be restricted to those of height one. A similar statement can be
made for primes of R[xq,...,x,].

Theorem 3.19 ([16, Corollary 3.5]). Let R € H be a ¢p-Noetherian ring and let P be
a prime of R[xy, ..., xn]. If P has height greater than n, then P is finitely generated.

The ring in our next example shows that the converse of Theorem 3.18 does not
hold even for prime ideals.

Example 3.20 ([16, Example 3.6]). Let R = D(+)L be the idealization of L. =
K((»))/D over D = K][[y]]. Then R is a quasilocal ¢-Noetherian ring with nil-
radical Nil(R) isomorphic to L. Consider the polynomial g(x) = 1 — yx. Since the
coefficients of g generate D as an ideal and g is irreducible, P = gD|x] is a height-
one principal prime of D[x] with P N D = (0). Each nonzero element of L can be
written in the form d/y”™ where n is a positive integer, y denotes the image of y in
Landd = dy+diy + -+ dy—1y" ! with dy # 0. Given such an element, let
f(x) =14+ yx + -+ y*"1x" ! ¢ L[x]. Then g(x)(df(x)/y") = d/y" since
dy"/y™ = 0in L. It follows that g(x)R[x] is a height-one principal prime of R[x]
that contracts to Nil(R).

4 ¢-Priifer rings and ¢-Bezout rings

We say that a nonnil ideal I of R is ¢-invertible if ¢ (1) is an invertible ideal of ¢ (R).
Recall from [3] that R is called a ¢-Priifer ring if every finitely generated nonnil ideal
of R is ¢-invertible.
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Theorem 4.1 ([3, Corollary 2.10]). Let R € H#. Then the following statements are
equivalent:

(1) R is a ¢-Priifer ring;
(i) ¢(R) is a Priifer ring;
(iii) ¢ (R)/Nil(¢(R)) is a Priifer domain;
(iv) Rp is a ¢-CR for each prime ideal P of R;
(v) Rp/Nil(Rp) is a valuation domain for each prime ideal P of R;
(vi) Rpr/Nil(Ryy) is a valuation domain for each maximal ideal M of R;
(vil) Ry is a ¢-CR for each maximal ideal M of R.

Theorem 4.2 ([3, Theorem 2.11]). Let R € JH be a ¢-Priifer ring and let S be a ¢-
chained overring of R. Then S = Rp for some prime ideal P of R containing Z(R).

The following is an example of a ring R € J such that R is a Priifer ring, but R is
not a ¢-Priifer ring.

Example 4.3 ([3, Example 2.15]). Let n > 1 and let D be a non-integrally closed
domain with quotient field K and Krull dimension n. Set R = D(+)(K/D). Then
R € # and R is a Priifer ring with Krull dimension # which is not a ¢-Priifer ring.

Theorem 4.4 ([3, Theorem 2.17]). Let R € H#. Then R is a ¢-Priifer ring if and only
if every overring of ¢(R) is integrally closed.

Example 4.5 ([3, Example 2.18]). Let # > 1 and let D be a Priifer domain with quo-
tient field K and Krull dimension n. Set R = D(+)K. Then R € # is a (non-domain)
¢-Priifer ring with Krull dimension 7.

Recall from [21] that a ring R is said to be a pre-Priifer ring if R/ is a Priifer ring
for every nonzero proper ideal / of R.

Theorem 4.6 ([3, Theorem 2.19]). Let R € J such that Nil(R) # {0}. Then R is a
pre-Priifer ring if and only if R is a ¢-Priifer ring.

The following example shows that the hypothesis Nil(R) # {0} in Theorem 4.6 is
crucial.

Example 4.7 ([3, Example 2.20] and [42, Example 2.9]). Let D be a Priifer domain
with quotient field F. For indeterminates X, Y, let K = F(Y) and let V' be the
valuation domain K + XK[[X]]. Then V is one-dimensional with maximal ideal M =
XKI[[X]]. Set R = D + M. Then Nil(R) = {0}, and R is a pre-Priifer ring (domain)
which is not a Priifer ring (domain). Hence R is not a ¢-Priifer ring.
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Recall from [3] that aring R € # is said to be a ¢p-Bezout ring if ¢ (1) is a principal
ideal of ¢ (R) for every finitely generated nonnil ideal / of R. A ¢-Bezout ring is a
¢-Priifer ring, but of course the converse is not true. A ring R is said to be a Bezout
ring if every finitely generated regular ideal of R is principal.

Theorem 4.8 ([3, Corollary 3.5]). Let R € H. Then the following statements are
equivalent:
(1) R is a ¢-Bezout ring;
(i) R/ Nil(R) is a Bezout domain;
(iii) ¢ (R)/ Nil(¢(R)) is a Bezout domain;
(iv) ¢ (R) is a Bezout ring;
(v) Every finitely generated nonnil ideal of R is principal.

Theorem 4.9 ([3, Theorem 3.9]). Let R € H be quasi-local. Then R is a ¢-CR if and
only if R is a ¢p-Bezout ring.

Example 4.10 ([3, Example 3.8]). Let n > 1 and let D be a Bezout domain with
quotient field K and Krull dimension n. Set R = D(+)K. Then R € ¥ is a (non-
domain) ¢-Bezout ring with Krull dimension #.

5 ¢-Dedekind rings

Let R € #. We say that a nonnil ideal I of R is ¢-invertible if ¢(I) is an invertible
ideal of ¢(R). If every nonnil ideal of R is ¢-invertible, then we say that R is a ¢-
Dedekind ring.

Theorem 5.1 ([4, Theorem 2.6]). Let R € . Then R is a ¢-Dedekind ring if and only
if ¢ (R) is ring-isomorphic to a ring A obtained from the following pullback diagram:

A — A/M
\ 2
T — T/M

where T is a zero-dimensional quasilocal ring with maximal ideal M, A/M is a
Dedekind subring of T/ M, the verical arrows are the usual inclusion maps, and the
horizontal arrows are the usual surjective maps.

Example 5.2 ([4, Example 2.7]). Let D be a Dedekind domain with quotient field K,
and let L be an extension ring of K. Set R = D(+)L. Then R € J and Ris a
¢-Dedekind ring which is not a Dedekind domain.

We say that a ring R € JH is ¢-(completely) integrally closed if ¢(R) is (com-
pletely) integrally closed in T'(¢(R)) = Rni(r). The following characterization of
¢-Dedekind rings resembles that of Dedekind domains as in [40, Theorem 96].
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Theorem 5.3 ([4, Theorem 2.10]). Let R € J. Then the following statements are
equivalent:
(1) R is ¢-Dedekind;
(i1) R is nonnil-Noetherian (¢-Noetherian), ¢-integrally closed, and of dimension
E 1;
(iii) R is nonnil-Noetherian and Ry is a discrete ¢-chained ring for each maximal
ideal M of R.

A ring R is said to be a Dedekind ring if every nonzero ideal of R is invertible.

Theorem 5.4 ([4, Theorem 2.12]). Let R € J# be a ¢p-Dedekind ring. Then R is a
Dedekind ring.

The following is an example of a ring R € J# which is a Dedekind ring but not a
¢-Dedekind ring.

Example 5.5 ([4, Example 2.13]). Let D be a non-Dedekind domain with (proper)
quotient field K. Set R = D(+)K/D. Then R € J( and R = T(R). Hence R is a
Dedekind ring. Since R/ Nil(R) is ring-isomorphic to D, R is not a ¢-Dedekind ring
by [4, Theorem 2.5].

It is well known that an integral domain R is a Dedekind domain iff every nonzero
proper ideal of R is (uniquely) a product of prime ideals of R. We have the following
result.

Theorem 5.6 ([4, Theorem 2.15]). Let R € #. Then R is a ¢-Dedekind ring if and
only if every nonnil proper ideal of R is (uniquely) a product of nonnil prime ideals of

Theorem 5.7 ([4, Theorem 2.16]). Let R € J. Then the following statements are
equivalent:

(1) R is a ¢-Dedekind ring;

(i) Each nonnil proper principal ideal aR can be written in the form aR =
Q1+ Qn, where each Q; is a power of a nonnil prime ideal of R and the Q;’s
are pairwise comaximal;

(iii) Each nonnil proper ideal 1 of R can be written in the form I = Q-+ Qy,
where each Q; is a power of a nonnil prime ideal of R and the Q;’s are pairwise
comaximal.

Theorem 5.8 ([4, Theorem 2.20]). Let R € J. Then the following statements are
equivalent:

(1) R is a ¢-Dedekind ring;

(i1) Each nonnil prime ideal of R is ¢-invertible;

(iii) R is a nonnil-Noetherian ring and each nonnil maximal ideal of R is ¢-invertible.
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Theorem 5.9 ([4, Theorem 2.23]). Let R € H# be a ¢-Dedekind ring. Then every
overring of R is a ¢p-Dedekind ring.

6 Factoring nonnil ideals into prime and invertible ideals

In this section, we give a generalization of the concept of factorization of ideals of an
integral domain into a finite product of invertible and prime ideals which was exten-
sively studied by Olberding [48] to the context of rings that are in the class . Observe
that if R is an integral domain, then R € J. An ideal I of a ring R is said to be a
nonnil ideal if I € Nil(R). Let R € J¢. Then R is said to be a ¢-ZPUI ring if each
nonnil ideal I of ¢(R) can be written as [ = JP; --- P,, where J is an invertible ideal
of $(R) and Py, ..., P, are prime ideals of ¢(R). If every nonnil ideal / of R can
be written as I = JP;--- P,, where J is an invertible ideal of R and Py,..., P, are
prime ideals of R, then R is said to be a nonnil-ZPUI ring. Commutative ¢-ZPUI rings
that are in J¢ are characterized in [12, Theorem 2.9]. Examples of ¢-ZPUI rings that
are not ZPUI rings are constructed in [12, Theorem 2.13]. It is shown in [12, Theorem
2.14] that a ¢-ZPUI ring is the pullback of a ZPUI domain. It is shown in [12, Theo-
rem 3.1] that a nonnil-ZPUI ring is a ¢-ZPUI ring. Examples of ¢-ZPUI rings that are
not nonnil-ZPUI rings are constructed in [12, Theorem 3.2]. We call aring R € # a
nonnil-strongly discrete ring if R has no nonnil prime ideal P such that P2 = P. A
ring R € J is said to be nonnil-h-local if each nonnil ideal of R is contained in at most
finitely many maximal ideals of R and each nonnil prime ideal P of R is contained in
a unique maximal ideal of R.

Since the class of integral domains is a subset of #, the following result is a gener-
alization of [48, Theorem 2.3].

Theorem 6.1 ([12, Theorem 2.9]). Let R € J. Then the following statements are
equivalent:
(i) Risa ¢-ZPUI ring;

(ii) Every nonnil proper ideal of R can be written as a product of prime ideals of R
and a finitely generated ideal of R;

(iii) Every nonnil proper ideal of ¢ (R) can be written as a product of prime ideals of
¢ (R) and a finitely generated ideal of ¢ (R);

(iv) R is a nonnil-strongly discrete nonnil-h-local ¢-Priifer ring.

In the following result, we show that a nonnil-ZPUI ring is a ¢-ZPUI ring.
Theorem 6.2 ([12, Theorem 3.1]). Let R € H# be a nonnil-ZPUI ring. Then R is a
¢-ZPUI ring, and hence all the following statements hold:

(i) R/ Nil(R) is a ZPUI domain.

(ii) Every nonnil proper ideal of R can be written as a product of prime ideals of R
and a finitely generated ideal of R.
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(iii) Every nonnil proper ideal of ¢ (R) can be written as a product of prime ideals of
¢ (R) and a finitely generated ideal of ¢ (R).

(iv) R is a nonnil-strongly discrete nonnil-h-local ¢-Priifer ring.
(v) R is a nonnil-strongly discrete nonnil-h-local Priifer ring.

Examples of ¢-ZPUI rings that are not nonnil-ZPUI rings are constructed in the
following result.

Theorem 6.3 ([12, Theorem 3.2]). Let A be a ZPUI domain that is not a Dedekind
domain with Krull dimension n > 1 and quotient field K. Then R = A(+)K/A € H
is a ¢-ZPUI ring with Krull dimension n which is not a nonnil-ZPUI ring.

Olberding in [48, Corollary 2.4] showed that for each n > 1, there exists a ZPUI
domain with Krull dimension n. A Dedekind domain is a trivial example of a ZPUI
domain. We have the following result.

Theorem 6.4 ([12, Theorem 2.13]). Let A be a ZPUI domain (i.e. A is a strongly
discrete h-local Priifer domain by [48, Theorem?2.3]) with Krull dimension n > 1 and
quotient field F, and let K be an extension ring of F (i.e. K is a ring and F C K).
Then R = A(+)K € H is a ¢-ZPUI ring with Krull dimension n that is not a ZPUI
ring.

In the following result, we show that a ¢-ZPUI ring is the pullback of a ZPUI
domain. A good paper for pullbacks is the article by Fontana [27].

Theorem 6.5 ([12, Theorem 2.14]). Let R € H#. Then R is a ¢-ZPUI ring if and only
if p(R) is ring-isomorphic to a ring A obtained from the following pullback diagram:

A — A/M
\ \
T — T/M

where T is a zero-dimensional quasilocal ring with maximal ideal M, A/ M is a ZPUI
ring that is a subring of T/ M, the vertical arrows are the usual inclusion maps, and
the horizontal arrows are the usual surjective maps.

7 ¢-Krull rings

We say that a ring R € # is a discrete ¢p-chained ring if R is a ¢-chained ring with
at most one nonnil prime ideal and every nonnil ideal of R is principal. Recall from
[4] that a ring R € # is said to be a ¢-Krull ring if ¢ (R) = NV;, where each V; is a
discrete ¢-chained overring of ¢ (R), and for every nonnilpotent element x € R, ¢(x)
is a unit in all but finitely many V;.

Theorem 7.1 ([4, Theorem 3.1]). Let R € H. Then R is a ¢-Krull ring if and only if
R/ Nil(R) is a Krull domain.
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We have the following pullback characterization of ¢-Krull rings.

Theorem 7.2 ([4, Theorem 3.2]). Let R € H. Then R is a ¢-Krull ring if and only if
¢ (R) is ring-isomorphic to a ring A obtained from the following pullback diagram:

A — A/M
2 \
T — T/M

where T is a zero-dimensional quasilocal ring with maximal ideal M, A/ M is a Krull
subring of T/ M, the verical arrows are the usual inclusion maps, and the horizontal
arrows are the usual surjective maps.

Example 7.3 ([4, Example 3.3]). Let D be a Krull domain with quotient field K, and
let L be aring extension of K. Set R = D(+4)L. Then R € # and R is a ¢-Krull ring
which is not a Krull domain.

It is well known [29, Theorem 3.6] that an integral domain R is a Krull domain
if and only if R is a completely integrally closed Mori domain. We have a similar
characterization for ¢-Krull rings.

Theorem 7.4 ([4, Theorem 3.4]). Let R € H. Then R is a ¢-Krull ring if and only if
R is a ¢p-completely integrally closed ¢p-Mori ring.

Theorem 7.5 ([4, Theorem 3.5]). Let R € H be a ¢-Krull ring which is not zero-
dimensional. Then the following statements are equivalent:
(1) R is a ¢-Priifer ring;
(i1) R is a ¢-Dedekind ring;
(iii)) R is one-dimensional.
It is well known that if R is a Noetherian domain, then R’ is a Krull domain. In

particular, an integrally closed Noetherian domain is a Krull domain. We have the
following analogous result for nonnil-Noetherian rings.

Theorem 7.6 ([4, Theorem 3.6]). Let R € J be a nonnil-Noetherian ring. Then ¢ (R)’
is a ¢-Krull ring. In particular, if R is a ¢-integrally closed nonnil-Noetherian ring,
then R is a ¢-Krull ring.

It is known [40, Problem 8, page 83] that if R is a Krull domain in which all prime
ideals of height > 2 are finitely generated, then R is a Noetherian domain. We have
the following analogous result for nonnil-Noetherian rings.

Theorem 7.7 ([4, Theorem 3.7]). Let R € K be a ¢-Krull ring in which all prime
ideals of R with height > 2 are finitely generated. Then R is a nonnil-Noetherian ring.
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For aring R € #, let ¢ denotes the ring-homomorphism ¢ : T(R) —> Ryir)-
It is well known [29, Proposition 1.9, page 8] that an integral domain R is a Krull
domain if and only if R satisfies the following three conditions:

(i) Rp is a discrete valuation domain for every height-one prime ideal P of R;
(i)) R = NRp, the intersection being taken over all height-one prime ideals P of R;

(iii) Each nonzero element of R is in only a finite number of height-one prime ideals
of R, i.e., each nonzero element of R is a unit in all but finitely many Rp, where
P is a height-one prime ideal of R.

The following result is an analog of [29, Proposition 1.9, page 8].

Theorem 7.8 ([4, Theorem 3.9]). Let R € # with dim(R) > 1. Then R is a ¢-Krull
ring if and only if R satisfies the following three conditions:

(1) Rp is a discrete ¢-chained ring for every height-one prime ideal P of R;

(i) ¢r(R) = N@r,(Rp), the intersection being taken over all height-one prime
ideals P of R;

(iii) Each nonnilpotent element of R lies in only a finite number of height-one prime
ideals of R, i.e., each nonnilpotent element of R is a unit in all but finitely many
Rp, where P is a height-one prime ideal of R.

Recall that aring R is called a Marot ring if each regular ideal of R is generated by
its set of regular elements. A Marot ring is called a Krull ring in the sense of [38, page
37] if either R = T'(R) or if there exists a family {V;} of discrete rank-one valuation
rings such that:

(i) R is the intersection of the valuation rings {V;};
(i1) Each regular element of T'(R) is a unit in all but finitely many V;.

The following is an example of aring R € J# which is a Krull ring but not a ¢-Krull
ring.

Example 7.9 ([4, Example 3.12]). Let D be a non-Krull domain with (proper) quotient
field K. Set R = D(+)K/D. Then R € # and R = T(R). Hence R is a Krull ring.
Since R/ Nil(R) is ring-isomorphic to D, R is not a ¢-Krull ring by Theorem 7.1.

8 ¢@-Mori rings

According to [46], aring R is called a Mori ring if it satisfies a.c.c. on divisorial regular
ideals. Let R € J€. A nonnil ideal I of R is ¢-divisorial if ¢ (1) is a divisorial ideal of
¢(R), and R is a ¢p-Mori ring if it satisfies a.c.c. on ¢-divisorial ideals.

The following is a characterization of ¢-Mori rings in terms of Mori rings in the
sense of [46].
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Theorem 8.1 ([17, Theorem 2.2]). Let R € #. Then R is a ¢-Mori ring if and only if
¢(R) is a Mori ring.

The following is a characterization of ¢-Mori rings in terms of Mori domains.

Theorem 8.2 ([17, Theorem 2.5]). Let R € #. Then R is a ¢-Mori ring if and only if
R/ Nil(R) is a Mori domain.

Theorem 8.3 ([17, Theorem 2.7]). Let R € H be a ¢-Mori ring. Then R satisfies a.c.c.
on nonnil divisorial ideals of R. In particular, R is a Mori ring.

The converse of Theorem 8.3 is not valid as it can be seen by the following example.

Example 8.4 ([17, Example 2.8]). Let D be an integral domain with quotient field L
which is not a Mori domain and set R = D(+)(L/D), the idealization of L/D over
D. Then R € # is a Mori ring which is not a ¢-Mori ring.

Example 8.18 shows how to construct a nontrivial Mori ring (i.e., where R #
T(R)) in # which is not ¢-Mori.

Theorem 8.5 ([17, Theorem 2.10]). Let R € H be a ¢p-Noetherian ring. Then R is
both a ¢-Mori ring and a Mori ring.

Given a Krull domain of the form £ = L+ M, where L is a field and M a maximal
ideal of E, any subfield K of L gives rise to a Mori domain D = K4+ M. If L isnot a
finite algebraic extension of K, then D cannot be Noetherian (see [19, Section 4]). We
make use of this in our next example to build a ¢-Mori ring which is neither an integral
domain nor a ¢-Noetherian.

Example 8.6 ([17, Example 2.11]). Let K be the quotient field of the ring D =
Q + XRJ[[X]] and set R = D(+)K, the idealization of K over D. It is easy to
see that Nil(R) = {0}(4+)K is a divided prime ideal of R. Hence R € J. Now
since R/ Nil(R) is ring-isomorphic to D and D is a Mori domain but not a Noetherian
domain, we conclude that R is a ¢-Mori ring which is not a ¢-Noetherian ring.

In light of Example 8.6, ¢p-Mori rings can be constructed as in the following exam-
ple.

Example 8.7 ([17, Example 2.12]). Let D be a Mori domain with quotient field K and
let L be an extension ring of K. Then R = D(+)L, the idealization of L over D, is
in #. Moreover, R is a ¢-Mori ring since R/ Nil(R) is ring-isomorphic to D which is
a Mori domain.

The following result is a generalization of [54, Theorem 1]. An analogous result
holds for Mori rings when the chains under consideration are restricted to regular divi-
sorial ideals whose intersection is regular [46, Theorem 2.22].
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Theorem 8.8 ([17, Theorem 2.13]). Let R € #. Then R is a ¢p-Mori ring if and only
if whenever {I,,} is a descending chain of nonnil ¢-divisorial ideals of R such that
N I, # Nil(R), then {I,} is a finite set.

Let D be an integral domain with quotient field K. If I is an ideal of D, then
(D :1)={x € K| xI € D}. Mori domains can be characterized by the property
that for each nonzero ideal 7, there is a finitely generated ideal J C I such that
(D : I) = (D : J) (equivalently, I, = Jy) ([51, Theorem 1]). Our next result
generalizes this result to ¢-Mori rings.

Theorem 8.9 ([17, Theorem 2.14]). Let R € #. Then R is a ¢p-Mori ring if and only
if for any nonnil ideal I of R, there exists a nonnil finitely generated ideal J, J C I,
such that ¢(J)~" = ¢(1)7", equivalently, ¢p(J)y = ¢(I)s.

In the following theorem we combine all of the different characterizations of ¢-
Mori rings stated in this section.

Theorem 8.10 ([17, Corollary 2.15]). Let R € H. The following statements are equiv-
alent:

(i) R isa ¢-Mori ring;

(i) R/ Nil(R) is a Mori domain;
(iii) ¢(R)/Nil(¢(R)) is a Mori domain;
(iv) ¢(R) is a Mori ring.

) If {Im} is a descending chain of nonnil ¢-divisorial ideals of R such that N I, #
Nil(R), then {I,,} is a finite set;

(vi) For each nonnil ideal I of R, there exists a nonnil finitely generated ideal J,
J C I, such that $(J)™' = ¢p(I)7;

(vii) For each nonnil ideal I of R, there exists a nonnil finitely generated ideal J,

J C 1, such that $(J)y = ¢(1)y.

The following result is a generalization of [54, Theorem 5].

Theorem 8.11 ([17, Theorem 3.1]). Let R € # be a ¢-Mori ring and I be a nonzero
¢-divisorial ideal of R. Then I contains a power of its radical.

We recall a few definitions regarding special types of ideals in integral domains.
For a nonzero ideal I of an integral domain D, I is said to be strong if /1™' = I,
strongly divisorial if it is both strong and divisorial, and v-invertible if (1/~'), = D.
We will extend these concepts to the rings in K .

Let / be a nonnil ideal of a ring R € #. We say that [ is strong if 17" = I,
¢-strong if p(1)¢(1)~" = ¢(I), strongly divisorial if it is both strong and divisorial,
strongly ¢-divisorial if it is both ¢-strong and ¢-divisorial, v-invertible if (I117"), = R
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and ¢-v-invertible if (¢(I)¢p(1)™")y = ¢(R). Obviously, I is ¢-strong, strongly ¢-
divisorial or ¢-v-invertible if and only if ¢ (/) is, respectively, strong, strongly diviso-
rial or v-invertible.

In [51, Proposition 1], J. Querré proved that if P is a prime ideal of a Mori domain
D, then P is divisorial when it is height one. In the same proposition, he incorrectly
asserted that if the height of P is larger than one and P~! properly contains D, then P
is strongly divisorial. While it is true that such a prime must be strong, a (Noetherian)
counterexample to the full statement can be found in [34]. What one can say is that P,
will be strongly divisorial (see [5]).

Theorem 8.12 ([17, Theorem 3.3]). Let R € H# be a ¢p-Mori ring and P be a (nonnil)
prime ideal of R. If ht(P) = 1, then P is ¢-divisorial. If ht(P) > 2, then either
d(P)~" = ¢(R) or ¢(P), is strongly divisorial.

For a ¢-Mori ring R € #, let D,,(R) denote the maximal ¢-divisorial ideals of
R; i.e., the set of nonnil ideals of R maximal with respect to being ¢-divisorial. The
following result generalizes [25, Theorem 2.3] and [19, Proposition 2.1].

Theorem 8.13 ([17, Theorem 3.4]). Let R € H be a ¢p-Mori ring such that Nil(R) is
not the maximal ideal of R. Then the following hold:

(a) The set Dy, (R) is nonempty. Moreover, M € Dy, (R) if and only if M/ Nil(R) is
a maximal divisorial ideal of R/ Nil(R).

(b) Every ideal of Dy, (R) is prime.

(c) Every nonnilpotent nonunit element of R is contained in a finite number of maxi-
mal ¢-divisorial ideals.

As with a nonempty subset of R, a nonempty set of ideals S is multiplicative if (i)
the zero ideal is not contained in S, and (ii) for each I and J in S, the product /J is
in . Such a set S is referred to as a multiplicative system of ideals and it gives rise
to a generalized ring of quotients Rg = {t € T(R) | tI C R for some [ € §}. For
each prime ideal P, R(py = {t € T(R) | st € R for some s € R\P} = Rs, where
S is the set of ideals (including R) that are not contained in P. Note that in general a
localization of a Mori ring need not be Mori (see Example 8.18 below). On the other
hand, if S is a multiplicative system of regular ideals, then Rgs is a Mori ring whenever
R is Mori ring ([46, Theorem 2.13]).

Theorem 8.14 ([17, Theorem 3.5], and [17, Theorem 2.2]). Let R be a ¢-Mori ring.
Then

(a) Rs is a ¢p-Mori ring for each multiplicative set S.

(b) Rp is a ¢-Mori ring for each prime P.

(¢) Rg is a ¢-Mori ring for each multiplicative system of ideals §.

(d) R(p) is a ¢-Mori ring for each prime ideal P.
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One of the well-known characterizations of Mori domains is that an integral domain
D is a Mori domain if and only if (i) Dz is a Mori domain for each maximal divisorial
ideal M, (ii) D = N Dy where the M range over the set of maximal divisorial ideals
of D, and (iii) each nonzero element is contained in at most finitely many maximal
divisorial ideals ([52, Théoreme 2.1] and [54, Théoreme 1.2]). A similar statement
holds for ¢-Mori rings. Note that in condition (ii), if D has no maximal divisorial
ideals, the intersection is assumed to be the quotient field of D. For the equivalence,
that means that D is its own quotient field. The analogous statement is that if D, is
empty, then we have R = T'(R) = Ryj(g) With Nil(R) the maximal ideal.

Theorem 8.15 ([17, Theorem 3.6]). Let R € H#. Then the following statements are
equivalent:

(1) R isa ¢-Moriring;

(i) (a) Ry is a ¢-Mori ring for each maximal ¢-divisorial M, (b) ¢(R) = Nd(R) )l
where the M range over the set of maximal ¢-divisorial ideals, and (c) each non-
nil element (ideal) is contained in at most finitely many maximal ¢-divisorial
ideals;

(iii) (a) R(ary is a p-Mori ring for each maximal ¢-divisorial M, (b) $(R) = Np(R)g )i}
where the M range over the set of maximal ¢-divisorial ideals, and (c) each non-
nil element (ideal) is contained in at most finitely many maximal ¢-divisorial
ideals.

In [19], V. Barucci and S. Gabelli proved that if P is a maximal divisorial ideal
of a Mori domain D, then the following three conditions are equivalent: (1) Dp is a
discrete rank-one valuation domain, (2) P is v-invertible, and (3) P is not strong [19,
Theorem 2.5]. A similar result holds for ¢-Mori rings.

Theorem 8.16 ([17, Theorem 3.9]). Let R € JH be a ¢p-Mori ring and P € D,,(R).
Then the following statements are equivalent:

(1) Rp is a discrete rank-one ¢-chained ring;

(i) P is ¢p-v-invertible;
(iii) P is not ¢-strong.

Recall from [38] that if f(x) € R[x], then c(f) denotes the ideal of R generated by
the coefficients of f(x), and R(x) denotes the quotient ring R[x]s of the polynomial
ring R[x], where S is the set of f € R[x] such that c(f) = R.

Theorem 8.17 ([17, Theorem 4.5]). Let R be an integrally closed ring for which Nil(R) =]}
Z(R) # {0}. Then the following statements are equivalent:

(1) R is ¢-Mori and the nilradical of T (R[x]) is an ideal of R(x);

(2) R(x) is ¢p-Mori;
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(3) R(x) is ¢p-Noetherian;

(4) R is ¢-Noetherian and the nilradical of T (R[x]) is an ideal of R(x);
(5) Each regular ideal of R is invertible;

(6) R/Nil(R) is a Dedekind domain;

(7) R is a ¢p-Dedekind ring.

As mentioned above, a Mori ring is said to be nontrivial if it is properly contained
in its total quotient ring. Our next example is of a nontrival Mori ring that is in the set
J but is not a ¢-Mori ring.

Example 8.18 ([17, Example 5.3]). Let E be a Dedekind domain with a maximal ideal
M such that no power of M is principal (equivalently, M generates an infinite cyclic
subgroup of the class group) and let D = E + x F[x], where F is the quotient field of
E.Let? ={ND | N € Max(E)\{M}}, B = )_F/Dp, where each Py € #, and
let R = D(+)B. Then the following hold:

(a) If J is a regular ideal, then J = I(4+)B = IR for some ideal / that contains

a polynomial in D whose constant term is a unit of £. Moreover, the ideal /
is principal and factors uniquely as P --- P,", where the P; are the height-one
maximal ideals of D that contain 7.

(b) R # T(R) since, for example, the element (1 + x, 0) is a regular element of R

that is not a unit.

(c) R is anontrivial Mori ring but R is not ¢-Mori.

(d) MR is a maximal ¢-divisorial ideal of R, but Rpsr is not a Mori ring.
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Note 15

T. Lucas =
Th. Lucas
(see [16,
17])?



